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ABSTRACT Computational reproducibility, or the ability to reproduce analytic results of a
scientific study on the basis of publicly available code and data, is a shared goal of many
researchers, journals, and scientific communities. Researchers in many disciplines includ-
ing political science have made strides toward realizing that goal. A new challenge,
however, has arisen. Code too often becomes obsolete within only a few years. We
document this problem with a random sample of studies posted to the Institution for
Social and Policy Studies (ISPS) Data Archive; we encountered nontrivial errors in seven of
20 studies. In line with similar proposals for the long-term maintenance of data and
commercial software, we propose that researchers dedicated to computational reproduci-
bility should have a plan in place for “active maintenance” of their analysis code. We offer
concrete suggestions for how data archives, journals, and research communities could
encourage and reward the active maintenance of scientific code and data.

Astudy is computationally reproducible if a suffi-
ciently savvy third party could download the code
and data from a public repository and successfully
execute the analysis with minimal difficulty. Ini-
tiatives in political science such as DA-RT (Elman,

Kapiszewski, and Lupia 2018; Lupia and Elman 2014) reflect a
growing consensus that computational reproducibility is a shared
goal—at least for research that relies on the formal analysis of
quantitative or qualitative data that can be safely made public
(Alvarez, Key, and Núñez 2018; Christensen, Freese, and Miguel
2019; Dafoe 2014; Rohlfing et al. 2020).

Although “the scientific enterprise depends on the ability of the
scientific community to scrutinize scientific claims” (National
Academies of Sciences, Engineering, andMedicine 2019, 6), evalu-
ating published scientific results can be difficult because readers
must infer fromwritten descriptions of statistical procedures what

the authors must have actually done. Even when those descrip-
tions are accurate, they are necessarily an approximation of what
occurred. The move toward computational reproducibility as a
precondition of publication has been successful in revealing ana-
lysis errors and ensuring that sharedmaterials are given persistent
links (Gertler and Bullock 2017).

We consider what happens after materials have been depos-
ited in public archives. A study that was computationally repro-
ducible on the day of deposit has already cleared a high bar. In
addition to rigorous scrutiny of the manuscript, the code and
data—or “replication archive,” as it is commonly referred to in
political science—were demonstrated by a trusted party to repro-
duce the numerical results reported in the paper. However,
computational reproducibility is dynamic and sometimes elu-
sive. Code that successfully executes on the day of deposit may
break a year, a decade, or a generation later. Operating systems
change and software packages are updated or not maintained at
all. Data used for analysis may become unintelligible if the
software used to create the data cannot be run. Workflows that
depend on particular online resources may fail if the resources
are moved or taken down. The cost of these failures is the
potential for loss of knowledge and a diminished ability to use
these materials in future settings.
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This article proposes “active maintenance” as a solution to this
problem.We suggest that replication archives should be inspected
periodically to ensure they run in contemporary computing envir-
onments according to a maintenance plan. Active maintenance
builds on common practices in the data-preservation (Conway

2000) and code-development communities (Fowler and Foemmel
2006). Both recognize that supporting materials is an ongoing
effort that requires resources, infrastructure, and standards.

Whether active maintenance is appropriate in a given case
depends on the relative benefits and costs. The benefits of active
maintenance are data and code that continue to provide scholars
with tools to understand, critique, and reuse existing scientific
knowledge. The costs associated with maintenance, of course,
could be substantial. Whether the benefits exceed the costs will
ultimately depend on the value of the scientific knowledge con-
tained in the replication archive and on the difficulty of the
requiredmaintenance.We argue that studies deemed as important
justify an investment in long-term reproducibility. We discuss
who among the authors, archives, publishers, scholarly commu-
nities, funders, universities, and other stakeholders might take
responsibility for the active maintenance of digital materials.

MOTIVATING EXAMPLE: “SHY TRUMP VOTERS”

We begin with a case study that illustrates over-time degradation
in computational reproducibility and how active maintenance
could address it. Coppock (2017) reported the results of a study
that attempted to discern whether some portion of the polling
misses in the 2016 US presidential election could be attributed to
survey respondents who misreported their support for Donald
Trump for fear of being perceived as racist or sexist.

The ISPS Data Archive reviewed the replication materials for
Coppock (2017) in July 2017 as part of its routine process (Peer and
Green 2012). Archive staff confirmed that all files necessary to
replicate the reported results were available. The analysis con-
sisted primarily of descriptive summaries and a comparison of
direct and list experimental estimates with bootstrapped standard
errors. Two years later, archive staff revisited these materials as
part of a training exercise. Newly hired staff members encountered
an error that prevented the code from running in full. Archive staff
contacted the author, who traced the error to the removal of the
bootstrap function from the broom package for R (Robinson and
Hayes 2019) and then rewrote the bootstrap code using the
rsample package instead (Kuhn, Chow, and Wickham 2020).
ISPS staff then confirmed that results reported in the paper could
be computationally reproduced and posted the updated materials.

This case is an example of unplanned active maintenance.
Close working relationships between archive staff and ISPS
researchers facilitated a simple troubleshooting and update pro-
cess. Extending the computational reproducibility of this study
cost perhaps 10 emails and an hour of debugging.

COMPUTATIONAL REPRODUCIBILITY IS DYNAMIC

Achieving computational reproducibility at the time of deposit is
itself a feat. Even before deposit, computational reproducibility

typically requires that researchers maintain organized data, use
version control, and test code according to best practices of
reproducible research (Christensen, Freese, and Miguel 2019;
Dafoe 2014). Reproducibility is challenged after deposit if future
users cannot make use or sense of the files.

Reproducibility breaks down if datasets are damaged at the bit
level or contained in proprietary file formats incompatible with
current systems. After a period of time, the original softwaremight
be totally unavailable (Peng 2011) or restricted (e.g., closed source),
or the ability to use it may be constrained by numerous compo-
nents and dependencies (Hinsen 2019; Ivie and Thain 2018).
Changes to statistical programming languages can ripple through
the many add-on modules and packages on which analysts rely.
For example, R updated how it generates random samples in 2019
to allow for greater uniformity of uniform random samples (Smith
2019). As a result, analyses that depend on random-number
generation will yield slightly different results with a more recent
version of R, even if the replication archive included a random-
number seed. Furthermore, the interpretability of study documen-
tation and metadata is itself dynamic. Even if the documentation
makes sense to a contemporary user, it may be less interpretable to
users 50 years in the future—or even to the original researcher a
few years after deposit (Bowers 2011). These breakdowns can
prevent future researchers from computationally reproducing
the original results and from using the materials in a
meaningful way.

EVALUATION OF THE LONG-TERM COMPUTATIONAL
REPRODUCIBILITY OF 20 STUDIES

To assess long-term computational reproducibility in the ISPS
Data Archive, we attempted to execute the analysis files associated
with a sample of studies, all of which were computationally
reproducible upon deposit. We compiled a list of all 97 archived
studies, excluded three books, and then randomly selected 20 stud-
ies (Peer, Orr, and Coppock 2021). The sample included studies
archived between 2009 and 2019, with from four to 88 files
associated with each study. These studies were archived using
versions of Stata (18), R (one), and SPSS (one) that were available
at the time of deposit.

Between December 2019 and March 2020, archive staff
reviewed the program files using Stata 15, R 3.6.1 and R 3.6.2,
and SPSS 26. For each study, they reviewed documentation and
downloaded data and analysis files. After adjusting working
directories and file names, they attempted to run each program
file and recorded any errors. Errors were classified based on
whether a moderately trained replicator would be able to over-
come them without substantially updating the script for the
statistical analysis or after receiving help from the study authors
(table 1).

Of these 20 studies, 13 could be reproduced with present-day
hardware and software. Various challenges to computational
reproducibility emerged in the remaining seven studies. In six
studies, program files produced errors that could be resolved by
seasoned analysts. Necessary adjustments, such as updating

Code that successfully executes on the day of deposit may break a year, a decade, or a
generation later.
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Stata’s outreg command to outreg2, are trivial for advanced
users. In three of the studies, program files produced errors that
could not be resolved by present-day users without further infor-
mation or documentation. For example, variables that now appear
to be missing would be supplied or explained most easily by study
authors. In three of the 20 studies, raw data and associated
cleaning files were not deposited. Because it often is necessary
to exclude raw data from replication files, we did not classify the
resulting errors as indications of failed computational replication.

For 11 of the studies, archive staff added R files at the time of
deposit as part of an effort to convert statistical code to open-
source formats. Of the eight instances inwhich the R programs did
not run, several included simple typos. However, emerging chal-
lenges to computational reproducibility were generally more dif-
ficult to overcome. For example, three studies relied on packages
that had been removed from CRAN (e.g., Design) or updated in
ways that made it impossible to run the original syntax (e.g.,
Zelig).

In summary, we found that even in the relatively short 10-year
period, replication materials that originally allowed for computa-
tional reproducibility broke down. Most of the challenges were

encountered in the older studies. Sophisticated users would have
little difficulty resolving many of the errors that appeared; how-
ever, even some of the user-resolvable errors would have required
substantial troubleshooting and recoding.

TECHNOLOGY-BASED APPROACHES

A valuable if not wholly satisfying solution to the degradation
over time of computational reproducibility is containerization.
The replication archive and the computing environment as it
existed at the moment of deposit (i.e., a “snapshot”) are placed
in a virtual container guaranteeing that even if the code is run on
different machines, the same results will be reproduced. Emula-
tion—that is, running legacy software on modern computers—is a
procedurally distinct approach that similarly allows users to
execute code on a host system. Both approaches have the principal
virtue of dramatically increasing the probability that old code will
run in the future.

Nevertheless, these approaches face inherent limitations when
the goal is for future users tomake use or sense of the files. As Katz
(2017) observed, containers “provide bitwise reproducibility but
aren’t scientifically useful because, as black boxes, you can’t really
remix the contents.” For example, consider Brady and Ansolabe-
here’s (1989) analysis of voter preferences, whichwas conducted in
FORTRAN. Containerization was not available at the time, but if
it had been, in principle wewould be able to reproduce the analysis
within the confines of the 1989 time capsule. However, extending
the analysis to modern data or incorporating later methodological
advances would not be possible.

Technology-based approaches also face a coordination prob-
lem. For example, containerization and packaging tools (e.g.,
Research Compendium, Reprozip, and WholeTale) are proliferat-
ing but, importantly, any such tool will be most reliable when it is
popular. If a technological solution falls out of favor in the
scientific community or fails to gain traction in the first place, it
is not likely to be maintained. With no training or support
networks for users in the somewhat distant future, reopening
containers or accessing any technological tool may become
increasingly difficult over time.

ACTIVE MAINTENANCE

Our proposed solution to the problem of degradation over time in
computational reproducibility is active maintenance. Unlike static
images, these strategies afford more robust options for future
reuse. Active maintenance requires monitoring materials and
deploying a combination of strategies drawn from two fields: data
preservation and code development. Recent recommendations on
how to sustain content over time parallel our active-maintenance
suggestion (Daigle et al. 2018).

Our thinking about active maintenance is influenced by digital
archivists’ approaches to preserving the usability of digital mater-
ials. “Active preservation” is a curatorial responsibility and relies
on strategies including copying and migration. Copying entails
saving a copy of the data in a system-independent, nonproprietary

format that is likely to bemachine readable in future decades. This
procedure has advantages but some information may be lost in
translation. Migration goes further and “includes refreshing the
media but also addresses the internal structure of the files so that
the information within can be read on subsequent computer
platforms, operating systems, and software” (Green, Dionne,
and Dennis 1999). Because code is instrumental for computational
reproducibility, more archives and repositories are applying these
strategies to software (Chassanoff et al. 2018).

Software developers are keenly aware of how changes to the
computational environment affect the performance of source code.
Software-testing techniques such as continuous integration
involve regularly recompiling software packages to verify that
the software runs without errors. Key principles include frequent
automatic testing, documenting specifications and dependencies,
and saving all components in one location. Adopting code-testing
principles makes science more robust (Krafczyk et al. 2019).

In summary, we found that even in the relatively short 10-year period, replication materials
that originally allowed for computational reproducibility broke down.

Table 1

Computational Reproducibility in 20 Studies

Author Provided
Code

Archive Added
Code

N=20 N=11

No errors 13 (65%) 3 (27%)

Resolvable errors 6 (30%) 8 (74%)

Errors requiring further
information

3 (15%) 0

Data-preparation scripts not
archived

3 (15%) 0
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Committing to automatically rerunning computational analysis
whenever relevant changes are made can increase the probability
that the code remains available and usable (Beaulieu-Jones and
Greene 2017).

DISCUSSION

Computational reproducibility is a special type of knowledge that
offers future analysts a way to scrutinize and understand scientific
studies more intimately and tangibly than a journal article can
provide. However, computational reproducibility is time varying:
we showed in the case of the ISPSDataArchive how reproducibility
degraded over time. As political science and other fields develop
shared values and norms around computational reproducibility, we
must recognize that our commitment to this knowledge should not
end on the day we deposit the study in the archive.

We propose active maintenance as a way to enhance long-term
computational reproducibility. Active maintenance requires
effort, which raises two important questions: Is the effort worth
it and who should be making the effort?

We think that the labor required to open up replication
archives every so often to determine whether they still run will
differ from study to study. As a general rule, “clean,” well-
documented code with proper metadata will be easier to maintain
and should be a matter of routine. Whether the substantial effort
required to update a complicated replication archive is worth it
will depend on the importance of the knowledge contained in it as
well as various communities’ ideas about how thematerials should
be used in the future. In our view, important replication archives
should be actively maintained, but we refrain from passing judg-
ment on which studies those are.

Who should be making these efforts depends on collective
values, priorities, and incentives. Research teams could take the
responsibility for enhancing reproducibility. Under this model,
the onus is on authors to adhere to “best practice” guidelines and
to stay current with advances in contemporary statistical comput-
ing. Currently, authors do not face incentives that encourage this
type of sustained investment, although their incentives are—at
least in part—a function of disciplinary norms that could change.
Under an alternative model, active maintenance could be crowd-
sourced to the wider academic community. Much like user con-
tributions to software made on GitHub, we can imagine the
intended audience of the replication archives (i.e., future scholars)
contributing up-to-date analysis scripts. Many courses have
replication-project assignments. Updating analysis code and
uploading it to the data repository could be an apt capstone to
such an assignment. This model faces the obvious difficulty that it
relies on the goodwill of the unspecified “crowd” to contribute to
knowledge, not to mention the cooperation of authors and arch-
ives to review their revisions. Under a third model, independent
third parties such as the Odum Institute for Research in Social
Science or CASCaD could provide active-maintenance services on
behalf of journals, universities, and scholarly associations.

Currently, these services certify computational reproducibility at
the time of deposit, although we could imagine expanding their
range of responsibilities. Finally, the responsibility for active
maintenance could fall to archive or repository staff. Data archives
are well positioned to provide services verifying computational
reproducibility as part of standard curation practice (Peer, Green,
and Stephenson 2014). Archives staff can conduct an initial
review, incorporate tools, and enforce policies conducive to active
maintenance—for example, requiring particular file formats or
specific information in a readme file at the time of deposit. Many
archives already conduct automated bit-level checks and poten-
tially could expand to perform routine reproducibility checks.

In light of the dynamic nature of computational reproducibil-
ity, we urge the political science community to recognize that
supporting data and code is an ongoing effort that requires

resources, infrastructure, standards, and policies. Studies that
were computationally reproducible on the day they were archived
often cannot be reproduced on modern software and hardware
only a few years later. For some of these studies, we think
computational reproducibility is worth actively maintaining.
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